首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1168篇
  免费   118篇
  国内免费   38篇
  2024年   1篇
  2023年   29篇
  2022年   15篇
  2021年   32篇
  2020年   34篇
  2019年   41篇
  2018年   36篇
  2017年   41篇
  2016年   36篇
  2015年   27篇
  2014年   46篇
  2013年   56篇
  2012年   31篇
  2011年   33篇
  2010年   30篇
  2009年   43篇
  2008年   45篇
  2007年   48篇
  2006年   51篇
  2005年   33篇
  2004年   33篇
  2003年   48篇
  2002年   39篇
  2001年   32篇
  2000年   23篇
  1999年   25篇
  1998年   21篇
  1997年   31篇
  1996年   28篇
  1995年   23篇
  1994年   20篇
  1993年   28篇
  1992年   28篇
  1991年   13篇
  1990年   18篇
  1989年   24篇
  1988年   19篇
  1987年   14篇
  1986年   25篇
  1985年   25篇
  1984年   29篇
  1983年   20篇
  1982年   18篇
  1981年   9篇
  1980年   6篇
  1979年   10篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1973年   1篇
排序方式: 共有1324条查询结果,搜索用时 31 毫秒
21.
A mechanism of respiration-dependent water uptake enhanced by auxin   总被引:2,自引:0,他引:2  
Summary There are many contradictory observations on the mechanohydraulic relation of growing higher plant cells and tissues. Graphical analysis of the simultaneous equations which govern irreversible wall yielding and water absorption has made more comprehensive the understanding of this relation when relative growth rate is plotted against turgor pressure. It suggests that some respiration-dependent and auxin sensitive process might regulate the difference of osmotic potential between cells and water source. Based on anatomical and electrophysiological knowledge of the pea stem xylem, we propose the wall canal system as the mechanism of respiration-dependent water uptake which is sensitive to auxin. This system consists of the xylem apoplastic walls, the xylem proton pumps, active solute uptake system and cell membranes. In the simplest case, third-order simultaneous differential equations are involved. Numerical analysis showed that net uptake of solutes enables water to be taken up against an opposing gradient of water potential. The behaviour of this wall canal system describes well the mechano-hydraulic relation of enlarging plant cells and tissues. Recent typical, but incompatible, interpretations of this relation are critically discussed based on our model.Abbreviations V the volume of enlarging symplast - the average extensibility of the wall - Pi turgor pressure - Y the yield threshold of the wall - L the relative hydraulic conductance - the solute reflection coefficient of the plasmamembrane - Ci the osmotic concentration of the symplast cells - Cx the osmotic concentration of the xylem vessels - Px hydrostatic pressure in the xylem vessels - R the gas constant - T absolute temperature - o water potential of xylem fluid - i water potential of symplast cells  相似文献   
22.
The chromoprotein bacteriorhodopsin from Halobacterium halobium has been incorporated into liposomes made of a fully synthetic, polymerizable lipid. Bacteriorhodopsin is found to be active in these polymer liposomes. The advantage in the use of such polymer systems concerning long-term stability in comparison with liposomes made of natural lipid is demonstrated.  相似文献   
23.
PPi driven ATP synthesis has been reconstituted in a liposomal system containing the membrane-bound energy-linked PPiase and coupling factor complex, both highly purified from Rhodospirillum rubrum. This energy converting model system was made by mixing both enzyme preparations with an aqueous suspension of sonicated soybean phospholipids and subjecting to a freeze-thaw procedure. In the presence of ADP, Mg2+, Pi and PPi the system catalyzed phosphorylation by up to 25 nmol ATP formed X mg protein-1 X min-1, at 20 degrees C, which was sensitive to uncouplers and inhibitors of phosphorylation such as oligomycin, efrapeptin and N,N'-dicyclohexylcarbodiimide.  相似文献   
24.
H+-pumping adenosinetriphosphatases (ATPases, EC 3.6.1.3) were demonstrated in sealed microsomal vesicles of tobacco callus. Quinacrine fluorescence quenching was induced specifically by MgATP and stimulated by EGTA and Cl?. Fluorescence quenching reflected a relative measure of pH gradient formation (inside acid), as it could be reversed by gramicidin (an H+/cation conductor) or 10 mM NH4Cl (an uncoupler). H+ pumping was inhibited by tributyltin (an ATPase inhibitor) and sodium vanadate, but it was insensitive to oligomycin or fusicoccin. The vanadate concentration required to inhibit pH gradient formation was similar to that needed to inhibit KCl-stimulated Mg2+-ATPase activity and generation of a membrane potential (measured by ATP-dependent 35SCN? uptake). About 45% of all three activities (ATPase, pH gradient, membrane potential generation) were vanadate-insensitive, supporting the idea that non-mitochondrial membranes of plants have at least two types of electrogenic H+ pump.A vanadate-insensitive, H+-pumping ATPase previously shown by methylamine accumulation was characterized to be anion-sensitive and possibly enriched in vacuolar membranes (Churchill, K.A. and Sze, H. (1983) Plant Physiol. 71, 610–617). Yet, pH gradient formation determined by quinacrine fluorescence quenching was decreased by monovalent cations with a sequence K+, Rb+, Na+ > Cs+,Li+> choline, bisTris-propane. Since K+ stimulated ATPase activity more than Bistris-propane, K+ appeared to collapse formation of the pH gradient by an H+/K+ countertransport. The sensitivity to vanadate and K+ provides evidence that the plasma-membrane ATPase is an electrogenic H+ pump.  相似文献   
25.
Summary Reaction kinetic analysis of the electrical properties of the electrogenic Cl pump inAcetabularia has been extended from steady-state to nonsteady-state conditions: electrical frequency responses of theAcetabularia membrane have been measured over the range from 1 Hz to 10 kHz at transmembrane potential differences across the plasmalemma (V m ) between –70 and –240 mV using voltage-clamp techniques. The results are well described by an electrical equivalent circuit with three parallel limbs: a conventional membrane capacitancec m , a steadystate conductanceg o (predominantly of the pump pathway plus a minor passive ion conductance) and a conductanceg s in series with a capacitancec p which are peculiar to the temporal behavior of the pump. The absolute values and voltage sensitivities of these four elements have been determined:c m of about 8 mF m–2 turned out to be voltage insensitive; it is considered to be normal.g o is voltage sensitive and displays a peak of about 80 S m–2 around –180 mV. Voltage sensitivity ofg s could not be documented due to large scatter ofg s (around 80 S m–2).c p behaved voltage sensitive with a notch of about 20 mF m–2 around –180 mV, a peak of about 40 mF m–2 at –120 mV and vanishing at –70 mV. When these data are compared with the predictions of nonsteady-state electrical properties of charge transport systems (U.-P. Hansen, J. Tittor, D. Gradmann, 1983,J. Membrane Biol. in press), model A (redistribution of states within the reaction cycle) consistently provides magnitude and voltage sensitivity of the elementsg o ,g s andc p of the equivalent circuit, when known kinetic parameters of the pump are used for the calculations. This analysis results in a density of pump elements in theAcetabularia plasmalemma of about 50 nmol m–2. The dominating rate constants for the redistribution of the individual states of the pump in the electric field turn out to be in the range of 500 sec–1, under normal conditions.  相似文献   
26.
Several major proteins of synaptic vesicles from rat or cow brain sediment as a large complex on sucrose density gradients when solubilized in nonionic detergents. A vacuolar H(+)-ATPase identified by sensitivity to bafilomycin A1 appears to be associated with this oligomeric protein complex. Two subunits of this complex, synaptic vesicle proteins S and U, correspond to the 57-kDa (B) and 39-kDa accessory (Ac39) subunits, respectively, of bovine chromaffin granule vacuolar H(+)-ATPase as shown by Western immunoblot analysis. The five subunits of the oligomeric complex constitute approximately 20% of the total protein of rat brain synaptic vesicles. Taken together, these results strongly suggest that the abundant, multisubunit complex partially purified from brain synaptic vesicles by density gradient centrifugation is a vacuolar H(+)-ATPase. Bafilomycin A1 completely blocks proton pumping in rat brain synaptic vesicles as measured by [14C]methylamine uptake and also blocks catecholamine accumulation measured by [3H]dopamine uptake. Moreover, ATPase activity, [14C]methylamine uptake, and [3H]dopamine uptake are inhibited by bafilomycin A1 at similar I50 values of approximately 1.7 nmol/mg of protein. These findings indicate that the vacuolar H(+)-ATPase is essential for proton pumping as well as catecholamine uptake by mammalian synaptic vesicles.  相似文献   
27.
Summary We have measured Ca2+ uptake and Ca2+ release in isolated permeabilized pancreatic acinar cells and in isolated membrane vesicles of endoplasmic reticulum prepared from these cells. Ca2+ uptake into cells was monitored with a Ca2+ electrode, whereas Ca2+ uptake into membrane vesicles was measured with45Ca2+. Using inhibitors of known action, such as the H+ ATPase inhibitors NBD-Cl and NEM, the Ca2+ ATPase inhibitor vanadate as well as the second messenger inositol 1,4,5-trisphosphate (IP3) and its analog inositol 1,4,5-trisphosphorothioate (IPS3), we could functionally differentiate two non-mitochondrial Ca2+ pools. Ca2+ uptake into the IP3-sensitive Ca2+ pool (IsCaP) occurs by a MgATP-dependent Ca2+ uptake mechanism that exchanges Ca2+ for H+ ions. In the absence of ATP Ca2+ uptake can occur to some extent at the expense of an H+ gradient that is established by a vacuolar-type MgATP-dependent H+ pump present in the same organelle. The other Ca2+ pool takes up Ca2+ by a vanadate-sensitive Ca2+ ATPase and is insensitive to IP3 (IisCaP). The IsCaP is filled at higher Ca2+ concentrations (10–6 mol/liter) which may occur during stimulation. The low steady-state [Ca2+] of 10–7 mol/liter is adjusted by the IisCaP.It is speculated that both Ca2+ pools can communicate with each other, the possible mechanism of which, however, is at present unknown.  相似文献   
28.
Summary The purpose of this study was to characterize the basolateral membrane of the S3 segment of the rabbit proximal tubule using conventional and ion-selective microelectrodes. When compared with results from S1 and S2 segments, S3 cells under control conditions have a more negative basolateral membrane potential (V bl=–69 mV), a higher relative potassium conductance (t K=0.6), lower intracellular Na+ activity (A Na=18.4mm), and higher intracellular K+ activity (A K=67.8mm). No evidence for a conductive sodium-dependent or sodium-independent HCO 3 pathway could be demonstrated. The basolateral Na–K pump is inhibited by 10–4 m ouabain and bath perfusion with a potassium-free (0-K) solution. 0-K perfusion results inA Na=64.8mm,A K=18.5mm, andV bl=–28 mV. Basolateral potassium channels are blocked by barium and by acidification of the bathing medium. The relative K+ conductance, as evaluated by increasing bath K+ to 17mm, is dependent upon the restingV bl in both S2 and S3 cells. In summary, the basolateral membrane of S3 cells contains a pump-leak system with similar properties to S1 and S2 proximal tubule cells. The absence of conductive bicarbonate pathways results in a hyperpolarized cell and larger Na+ and K+ gradients across the cell borders, which will influence the transport properties and intracellular ion activities in this tubule segment.  相似文献   
29.
家兔单侧PAG内注射CCK-83ng,能使静脉注射4mg/kg吗啡引起的镇痛作用降低73%或使电针镇痛效果降低67%。在1.5—6.0ng范围内呈量效关系。无硫的CCK-8无此作用。PAG内注射CCK受体拮抗剂proglumide 4μg可翻转CCK-8的抗吗啡镇痛作用。说明PAG部位注射外源性CCK-8可通过CCK受体对抗阿片镇痛。 PAG内注射CCK-8抗血清可显著增强静脉注射2mg/kg吗啡的镇痛效果。PAG内注射CCK抗血清本身也能引起痛阈轻度升高。说明PAG内有内源性的CCK-8发挥紧张性的抗阿片镇痛作用。  相似文献   
30.
Electric field induced pH changes of purple membrane suspensions were investigated in the pH range from 4.1 to 7.6 by measuring the absorbance change of pH indicators. In connection with the photocycle and proton pump ability, three different states of bacteriorhodopsin were used: (1) the native purple bacteriorhodopsin (magnesium and calcium ions are bound, the M intermediate exists in the photocycle and protons are pumped), (2) the cation-depleted blue bacteriorhodopsin (no M intermediate), and (3) the regenerated purple bacteriorhodopsin which is produced either by raising the pH or by adding magnesium ions (the M intermediate exists). In the native purple bacteriorhodopsin there are, at least, two types of proton binding sites: one releases protons and the other takes up protons in the presence of the electric field. On the other hand, blue bacteriorhodopsin and the regenerated purple bacteriorhodopsin (pH increase) show neither proton release nor proton uptake. When magnesium ions are added to the suspensions; the field-induced pH change is observed again. Thus, the stability of proton binding depends strongly on the state of bacteriorhodopsin and differences in proton binding are likely to be related to differences in proton pump activity. Furthermore, it is suggested that the appearance of the M intermediate and proton pumping are not necessarily related.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号